Dronacharya Group of Institutions, Gr. Noida

Department of Applied Sciences (First Year)

Even Semester (2020-2021)

Objective Question Bank

Subject Name & Code: Engineering Mathematics II (KAS 203T)

Unit-IV (COMPLEX VARIABLE-DIFFERNTIATION)

1.	Cauchy-Riemann	equations	in (Cartesian	form i	s/	are
----	----------------	-----------	------	-----------	--------	----	-----

(a)
$$u_x = v_y, u_y = -v_x$$
 (b) $u_x = v_y, u_y = v_x$ (c) $u_{xxx} + v_{yy} = 0$

(d) None of these.

2. Cauchy-Riemann equations in polar form is/ are

(a) $u_r = \frac{1}{r} v_{\theta}, \frac{1}{r} u_{\theta} = -v_r$ (b) $u_x = v_y, u_y = v_x$ (c) $u_{rr} + v_{\theta} = 0$

(b)
$$u_x = v_y, u_y = v_x$$

$$\text{(c) } u_{rr} + v_{\theta} = 0$$

(d) None of these.

3. A function which is analytic everywhere in finite complex plane is known as.

(a) Entire function

(b) Holomorphic function (c) meromorphic function (d) None

4. Let f(z) = u + iv be a complex valued function. Where $v = 3xy^2$, then

a) f is analytic for any choice of u

f is analytic for suitable choice of u

f is analytic only when u = constant

f can't be analytic for any choice of u.

5. If a function f(z) is continuous at z_0 , then

a) f(z) is differentiable at z_0

b) f(z) is not necessarily differentiable at z_0

c) f(z) is analytic at z_0 .

d) None of the above.

6. The only function among the following that is analytic, is

a) $f(z) = \operatorname{Re}(z)$

b) f(z) = Im(z)

c) $f(z) = \overline{z}$

d) $f(z) = \sin z$

7. If w = u(x, y) + iv(x, y) is an analytic function of z = x + iy, then $\frac{dw}{dz}$ equals

a) $\frac{\partial w}{\partial x}$ b) $-i\frac{\partial w}{\partial x}$ c) $i\frac{\partial w}{\partial y}$

d) $-i\frac{\partial w}{\partial y}$

8. If f(z) = u(x, y) + i v(x, y) is analytic, then f'(z) equals

a)
$$\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$$

b)
$$\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$$

c)
$$\frac{\partial u}{\partial y} - i \frac{\partial v}{\partial x}$$

a)
$$\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$$
 b) $\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$ c) $\frac{\partial u}{\partial y} - i \frac{\partial v}{\partial x}$ d) $i \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$

- 9. u, v are called conjugate harmonic function if
 - a) u, v are harmonic function and u + iv may not be analytic function.
 - u, v are harmonic function
 - u + i v is an analytic function
 - u, v are harmonic function and u + iv is an analytic function.
- An analytic function is 10.
 - a) Infinitely differentiable
 - b) not necessarily differentiable
 - c) finitely differentiable.
 - d) None of these.
- Let u(x, y) = 2x(1-y), for all real x and y. 11.

Then a function v(x, y) so that f(z) = u(x, y) + i v(x, y) is analytic, is

a)
$$x^2 - (y-1)^2$$

b)
$$(x-1)^2 - y^2$$

c)
$$(x-1)^2 + y^2$$

d)
$$x^2 - (y-1)^2 + C$$

- At z = 0, the function $f(z) = z^2 \bar{z}$ 12.
 - a) is analytic
 - b) differentiable
 - doesn't satisfy CR equation
 - d) Satisfy CR equations but not differentiable
- 13. Which of the following cannot be the real part of an analytic function.

a)
$$x^2 - y^2$$

b)
$$x^2 + y^2$$

c)
$$\cos x \cosh y$$

c)
$$\cos x \cosh y$$
 d) $\frac{1}{2} \log \left(x^2 + y^2 \right)$

The harmonic conjugate of $u(x, y) = (x-1)^3 - 3xy^2 + 3y^2$ is 14.

a)
$$3y(1+x^2)-y^3$$

b)
$$3x\left(1+y^2\right)$$

c)
$$(y-1)^{-3} + 3xy^2 - 3y^2$$

d)
$$(x-1)^3i + 3xy^2i - 3y^2i$$

- A function f (z) is analytic function if 14.
 - (a) Real Part of f(z) is analytic

- (b) Imaginary part of f(z) is analytic
- (c) Both real and imaginary part of f(z) is analytic
- (d) none of the above
- **15.** If u and v are harmonic functions then f(z) = u + iv is
 - a) Analytic function
 - (c) Analytic function only at z=0

- (b) need not be analytic function
- (d)none of the above

16.	If $f(z) = x + ay + i(bx + cy)$ is analytic the value of $a,b,\&c$ are							
	(A) $c = 1, a = -b$ (B) $a = 1, c = -b$ (C) $b = 1, a = -c$ (D) $a = 1 = b = c$							
17.	A point at which a function ceases to be analytic is called a a. Singular point (b)Non-Singular point (c) Regular point (d) regular point	Non-						
18.	A function \emph{v} is called a conjugate harmonic function for a harmonic function \emph{u} in Ω whenever							
	(a) $f = u + iv$ is analytic (b) u is analytic (c) v is analytic(d) $f = u - iv$ is analytic							
19.	If $f(z) = x^3 + ax^2y + bxy^2 + cy^3$ is analytic the value of $a,b,\&c$ are							
	(A) $a = 3i, b = -3, c = -i$ (B) $a = 3i, b = 3, c = -i$							
	(C) $a = 3i, b = -3, c = i$ (D) $a = -3i, b = -3, c = -i$							
21.	There exist no analytic functions f such that							
	a) Re $f(z) = y - 2x$ (b) Re $f(z) = y^2 - 2x$ (c) Re $f(z) = y^2 - x^2$ (d) Re $f(z) = y - x$							
22.	If $e^{ax}\cos y$ is harmonic, then value of a is							
	(a) i (b) 0 (c) -1 (d)2							
23	The harmonic conjugate of $2x - x^3 + 3xy^2$ is							
	(a) $x-3x^2y+y^3$ (b) $2y-3x^2y+y^3$ (c) $y+3x^2y+y^3$ (d) $2y+3x^2y-y^3$							
24	The function $e^x(\cos y - i\sin y)$ is							
	(a) analytic (b) not analytic (c) analytic when z=0 (d) analytic when z=i							
25.	If $f(z)$ is analytic then $\overline{f}(\overline{z})$ is							
	(a)analytic (b)not analytic (c) analytic when z=0 (d) analytic when z=1							
26.	Points at which $f(z) = \frac{z^2 - 1}{z^2 - 3z + 2}$ is not analytic are							
	(a) 1&-1 (b) i & -i (c) 1& i (d) 1 & 2							
27 .	The points at which $f(z) = \frac{1}{1+z^2}$ is not analytic							

(c) 1& i

(d) -1& -i

The points coincide with their transformations are known as(a) fixed points (b) critical points (c) singular points (d) None of these

(b) i & -i

(a) 1&-1

			-	lpha and eta are comple ar transformation	ex constants, is known as (d) bilinear
	mapping that pres a/anmapping.	erves angles be	etween orient	ed curves both in ma	agnitude and in sense is
	(a) informal	(b)signal	(c)conform	al (d)formal	
31. Th		d by an analytic	c function $f(z)$	r) is conformal at all	points z except at points
	(a)f'(z)=0	(b) <i>f</i> '(z	<i>r</i>) ≠ 0	(c) $f'(z) > 0$	(d) $f'(z) < 0$
32 . Th	ne invariant points	of the transfor	mation $w = \frac{1}{2}$	$\frac{z}{z}$ are	
	(a) -1,1	(b) 0,-1	(c) 0,1	(d)-1,1	
33 . Th	ne fixed points of t (a) -1,1	ne transformat	$sion w = \frac{z-1}{z+1}$	are	
	(a) -1,1	(b) i&-i	(c) 0,-1	(d)0,1	
35. T	he mapping $w = z$	$+z^{-1}$ transfo	rms circles of	constant radius into	
(a) cor	nfocal ellipses	(b)hyperbolas	(c)circles	(d)parabolas	
36. 1	he bilinear transfo	ormation that n	naps the point	s 0, i , ∞ respectively	γ into 0, 1, ∞ is w
	(a) $\frac{1}{z}$ (b) -	-z (c) <i>iz</i>	(d) -	iz	
37.	The invariant poin	ts of the transf	formation $w =$	$=\frac{1+z}{1-z}$ are	d) $-i$, $-1+i$
	a) i, i	b) i ,	-i	c) $1-i, 1+i$	d) $-i$, $-1+i$
38.	By the transform	nation $w = ze^{\frac{\pi}{4}}$	$\frac{i}{1}$, the line $x =$	= 0 is transformed in	nto the line
	a) $v = -u$				d) $v=0$
39.	Critical points of	•			
	a) $-\frac{\delta}{\gamma}$	o) $-\frac{\mathcal{S}}{\gamma}$ and ∞	c) —	$\frac{\delta}{\gamma}$ and 0 d) 0 and	∞
40.	The mapping w		is		

b) not conformal at z=1

d) everywhere conformal

c) not conformal at z=-1 and z=3

	41.					live $y = 0$ is, c) $Re(w) = 1$	d) $Re(w) = -1$
	42. The bilinear teams formation w which maps the point $0, 1, \infty$ is the z- plane onto the points- $i, \infty, 1$ is w - plane is						
				$b) \frac{z-i}{z+1}$		c) $\frac{z+i}{z-1}$	$d) \ \frac{z+1}{z-i}$
	43.						nd 2 is w = none of these
	44.	The fixed	points of the	transformat	ion $w = z^3$ are	2	
		(a) 0,1	(b)0),-1 (c) -1,1 (d	d) none of these	
	45.	The poin	ts of invariant	of the transf	formation w =	= (2z + 3) / (z + 2) is
		(a)z =	$\pm (3)^{1/2}$ (b) z	= ±(3) (c)z =	±(3i) ^{1/2}	$(d)z = \pm (3i)$	
	46.	If f(z) is ar	n analytic func	tion and v =	y² - x², then o	conjugate harmo	nic function is
		(a) 2xy	/ - c (b)2x ^{2y}	+ c (c)2x	y + c (d)2(y ²	$-x^2$) + c	
48.	(a) no	t analytic		(c) analytic		(d)analytic wher	
	(A) 2x	cy + c		(B) $x^2 + 2x$	y+c	(C) $2xy - y + $	c (D) $2xy+x+c$
49.	If imag	ginary par					maginary part is
	(A) x^2	$+y^2-y$	(B	$x^2 - y^2 - x^2$	x (C)	$x^2 - y^2 + x$	(D) $x^2 - y^2 + y$
50.	Harmo		gate of $u(x,$				
	(A) e^x	$\cos y + c$	(E	$e^x \sin y +$	c (C)	$e^{y} \sin x + c$	(D) $-e^y \sin x + c$
51. The function $f(z) = \sqrt{ xy }$ is not analytic at the origin but C -R conditions are satisfied							
		origin on		Everywhere		Both A &B	(D) None of these.
52. The function $f(z) = \frac{x^2 y^5 (x + iy)}{x^4 + y^{10}}$, $z \ne 0$ and $f(0) = 0$ is not analytic							
53.	The an	alytic fun	ly (B) ction whose	real part is	x^3-3xy^2+3x	$x^2 - 3y^2 + 1$.	(D) None of these.
							(D) None of these.
54.	54. Find the regular function whose imaginary part is $e^{-x}(x\cos y + y\sin y)$, $f(0) = 1$ is						
	(A) 1+		(B) z-		(C) z+7		(D) None of these.
55.	If f(z) i	is an analy	ytic function	of z, then	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$	$\log f'(z) $	

56. Find the constants a, b and c such that $f(z) = -x^2 + xy + y^2 + i(ax^2 + bxy + y^2)$ is analytic.

(A) a = -1/2, b = -2, c = 1/2 (B) a = -1/2, b = -2, c = 3/2 (C) a = -1/2, b = -3, c = 1/2 (D) None of these.

- 57. If $u = x^2 y^2$ then *u* is
 - (A) Harmonic
- (B) Analytic
- (C) Harmonic Conjugate (D) Conformal